# The Energy Implications of Recycling

Energy Management Task Force Dec. 4, 2013



### Saskatchewan Waste Reduction Council

- ENGO, 22 years old
- Multi-stakeholder
  - Municipal/government
  - Business/industry
  - Citizens





# Recycling database – saskwastereduction.ca





# Conferences/workshops





# Projects







# Other events



Waste Reduction Week







## **Current Issues**

Household hazardous waste

Food waste / organics





# Waste Management Hierarchy

- Reduce
- Reuse
- Recycle
- (Recover)
- It works!



#### Waste Reduction

- Avoid producing product in the first place
- Use less
- Find another way to accomplish goal



• Energy implications: avoid entire product life cycle



#### Reuse

- Use same product again for same function
- Avoids production of single-use products
- Energy implications: no raw materials extraction; no product manufacture
  - Reusable product still needs to be created





# Recycling

- Involves collection, processing, transportation, re-manufacturing
- Closed loop vs open loop (vs upcycling)
- Energy implications:
  - Less energy than original products
  - How much depends on material





# Recovery

 Extract energy or some raw materials, discard the rest

- Energy implications
  - No savings on product life cycle
  - Avoids energy production from other feedstocks





#### Typical Product Life Cycle





One or limited number of return cycles into product that is then disposed – open-loop recycling. Repeated recycling into same or similar product, keeping material from disposal – closed-loop recycling.



MJ/kg

SASKATCHEWAN
WASTE
REDUCTION
COUNCIL

**Table 3.2** Greenhouse Gas Emissions – Select Recyclables (2008)

| Product / Material                          | kg eCO2 / Tonne<br>Recycled or<br>Composted |  |  |
|---------------------------------------------|---------------------------------------------|--|--|
| Aluminum                                    | (9,827)                                     |  |  |
| Newspaper                                   | (3,666)                                     |  |  |
| Mixed Paper                                 | (3,236)                                     |  |  |
| Wood                                        | (2,753)                                     |  |  |
| Cardboard                                   | (2,236)                                     |  |  |
| Electronics                                 | (2,220)                                     |  |  |
| PET                                         | (1,638)                                     |  |  |
| HDPE                                        | (1,258)                                     |  |  |
| Re-refined Lubricating Oil                  | (1,133)                                     |  |  |
| Recycling/Composting Average<br>(MSW & DLC) | (1,152)                                     |  |  |
| Ferrous                                     | (900)                                       |  |  |
| Compostables                                | (757)                                       |  |  |
| Glass                                       | (181)                                       |  |  |
| Asphalt/Concrete                            | (14)                                        |  |  |

Figure 3.1 Greenhouse Gas Emissions per Tonne – Select Recyclables (2008)



#### Net GHG Emissions from MSW Management Options

(tonnes eCO2/tonne)

| Material         | Source<br>Reduction | Recycling/<br>Composting | Anaerobic Digestion | Thermal<br>Treatment | Landfill |
|------------------|---------------------|--------------------------|---------------------|----------------------|----------|
| Newspaper        | (3.81)              | (2.81)                   | (0.49)              | (0.05)               | (1.22)   |
| Fine Paper       | (5.93)              | (3.33)                   | (0.34)              | (0.04)               | 1.18     |
| Cardboard        | (5.22)              | (3.34)                   | (0.32)              | (0.04)               | 0.29     |
| Aluminum<br>Cans | (4.55)              | (6.49)                   | 0.01                | 0.01                 | 0.01     |
| Steel            | (1.95)              | (1.15)                   | 0.01                | (0.99)               | 0.01     |
| Glass            | (0.40)              | (0.10)                   | 0.01                | 0.01                 | 0.01     |
| HDPE             | (2.74)              | (2.27)                   | 0.01                | 2.85                 | 0.01     |
| PET              | (3.50)              | (3.63)                   | 0.01                | 2.13                 | 0.01     |
| Computers        | NA                  | (1.59)                   | 0.01                | 0.41                 | 0.01     |
| Food Waste       | NA                  | (0.24)                   | (0.10)              | 0.02                 | 0.80     |
| Yard Waste       | NA                  | (0.24)                   | (0.15)              | 0.01                 | (0.33)   |





# CO2 Emissions: Recycling versus Disposal (kg eCO2/kg)





#### Environmental Benefit per Tonne WEEE

■ REUSE ■ RECYCLING

 Note: total environmental benefit – pollution, human health impacts, not energy





# Thank you!

Joanne Fedyk 306-931-3242 joanne@saskwastereduction.ca

