Carbon Sequestration in the Boreal Forests of Saskatchewan

Mark Johnston Saskatchewan Research Council johnston@src.sk.ca

> Energy Managers Task Force 12 January 2012

Carbon sequestration in Saskatchewan forests

- How much is there?
- What factors determine the amount?
- How does it change over time and why?
- Can it be enhanced through human activity?

Why forests?

- The following slide is based on the Global Carbon Project's annual update on the global carbon cycle
- Released December 05 2011
- http://www.globalcarbonproject.org/
- Highly recommended!

Fate of Anthropogenic CO₂ Emissions (2010)

Federal Government's Risk Analysis

- Used to support decision-making under the Kyoto Protocol
- Annex I countries had options to include forest management (and other activities) in their GHG reporting
- Canada (Fed-Prov) carried out a highly sophisticated risk analysis based on forest carbon budget modeling at the provincial and national level (2001-2006)
- Used Monte-Carlo analysis to generate a distribution of outcomes – probability-based decision-making
- Will give an overview of the analysis with updated information

Silly question: What is a forest?

- Risk analysis recognized several categories of forest land based on the extent of human intervention (i.e. management):
 - Area of forest contributing to AAC
 - 2. Area where additional harvesting could occur
 - 3. Area subject to fire and insect management
 - 4. Area of protected forest provincial parks etc.
- Area of forest outside of these areas not considered

1 Area used to define AAC

where additional harvesting may occur

2 Area

3 Additional area with fire and insect management

4 Province-specific scenario
Provincial parks only

FMS 1 6.4 Mha

FMS 2 1.5 Mha FMS 3 4.9 Mha

FMS 4 0.55 Mha

All maps are at the 1:12 000 000 scale

Background: Probabilistic risk assessment during CP

Characteristics of Insect Outbreaks

Stochastic Parameters

- Interval between the end of one outbreak and the start of the next
- 2. Outbreak Length
- 3. Area of outbreak
- 4. Temporal dynamics of the outbreak (shape).

Insects

- Included both mortality and loss of growth
- Three main pests of SK forests:
 - Forest Tent Caterpillar
 - Spruce Budworm
 - Jack Pine Budworm

• Analysis could now be redone with Mountain Pine Beetle scenarios!

184 growth curves represented growth rates for various forest types, e.g.:

Carbon stock estimates

Forest Management Scenario 1

Year 1990

Stratum	Area (Mha)	Biomass (Mt C)	Dead Org. Matter (Mt C)	Ecosystem (Mt C)
Boreal Shield Boreal Plains Prairies	1.02 5·39 0	60 321 0	240 1 211 0	300 1 532 0
Total	6.41	381	1 451	1 832

Carbon stock dynamics

Monte Carlo runs with highest or lowest total carbon in 2032

Scenario 1

2008 – 2012 Distribution of Total Ecosystem Flux among MC runs

Provincial - 2008-2012 Total ecosystem flux

Provincial - 2008-2012 Total ecosystem flux

Conclusions

- The net carbon balance of Saskatchewan will be strongly affected by annual disturbance rates and the defined monitoring area.
- The probability distribution of the 2008-2012 net C balance is asymmetrical, with a risk of between 66 and 96% that the provincial forest will be a carbon <u>source</u> in the future.
- This analysis ignores the impacts of climate change, which are likely to increase the frequency and intensity of insect outbreaks and fires.

Enhancing sequestration

- Reducing impacts of disturbance
 - Fire suppression, insect control
 - Cost, environmental impacts?
- Forest management practices
 - Improved planting stock, GM trees, stand management
 - Social license?
- Afforestation with fast-growing species
 - High C accumulation rates up to 10 times natural forest
 - Role in SK economy forest products, bioenergy
 - Social license, economic viability?