Powering A Sustainable Energy Future

WIND POWER AND HYDROELECTRIC OPPORTUNITIES
IN SASKATCHEWAN

June 2, 2010

SaskPower's Story

- Our mission ... Safe, reliable and sustainable power for our customers.
- Formed through *The Power Commission Act* in 1929, SaskPower is a provincial Crown corporation.

Working together for the past 80 years to meet the energy needs of the people of Saskatchewan now and into the future.

- SaskPower manages \$4.5 billion in generation, transmission and distribution assets, and provides customer services and corporate support services.
- SaskPower's team is made up of more than 2,500 permanent full-time employees in 71 communities throughout the province.

Electrical Generating Facilities

SaskPower Generation Sources

As of January 2010

- SaskPower operates three coal-fired power stations, seven hydroelectric stations, five natural gas stations and two wind facilities
- Power purchases from the SunBridge Wind Power Project, Meridian Cogeneration Station, Cory Cogeneration Station and the NRGreen Kerrobert, Loreburn, Estlin and Alameda Heat Recovery Projects
- SaskPower's total available generating capacity is 3,840 MW
- Coal-fired electricity serves as the foundation of the SaskPower system
- Efforts are made to maximize existing coal, hydro and wind generation, which have the lowest incremental cost per unit of generation

SaskPower's Supply Challenge

- SaskPower has gone through a period of unprecedented demand for power from customers due to the momentum of the provincial economy
- Need to retire/refurbish aging infrastructure
- Environmental regulations have yet to be defined and may influence SaskPower's choice of electrical generation options
 - Coal-fired generation may not continue as it has in the past
- SaskPower will have to rebuild, replace or acquire 4,100 MW of electricity by 2030
- Operational challenges with adding new generation

The Demand for Power

Setting records at SaskPower

- Record spent on connecting new customers
- Record new applications for service in 2008
- Record peak load 3,231 MW on Dec 14, 2009

Increasing demand for power

- In the past 10 years, demand has grown by an average of 1.3% each year
- During the next decade, demand is expected to increase by approximately 3% per year
- Average growth of over 110 MW per year
 - 110 MW is enough electricity to supply power to approximately 110,000 households

Aging Infrastructure

Transforming the system

- SaskPower's province-wide electrical infrastructure (generation/transmission and distribution) was mostly built 30-50 years ago
- Infrastructure is aging and running close to full capacity
- SaskPower continues to replace and refurbish aging electrical infrastructure to meet the electrical needs of the people of Saskatchewan as it has for the past 80 years
- Will extend the life of existing infrastructure, where prudent
 - Many areas have already been life-extended or rebuilt
- Problem common to electrical utilities throughout North America

Environmental Challenges

Improving environmental performance

- Climate change has the single largest potential to shape the energy future of SaskPower
 - Federal and provincial regulations
 - Significant cost impacts for SaskPower and its customers
- 73% of SaskPower's available generation capacity is fossil-fuel based - using coal and natural gas
 - Regulations regarding coal generation are changing
 - Coal-fired generation may not continue as it has in the past
- Anticipated need to reduce sulphur dioxide (SO₂), nitrogen oxides (No_x), mercury and particulates
 - \$1.8 billion to reduce emissions to meet expected federal standards
- Last coal power station built in 1992 (Shand)

Balancing the system

- A combination of baseload, intermediate, intermittent and peaking power are required to run the electrical system and meet the needs of the people of Saskatchewan
 - Baseload power is the minimum amount of electric power delivered or required over a given period of time at a steady rate
 - Intermediate power plants meet demand during peak business hours of the week and colder months of the year
 - Intermittent power facilities cannot be dispatched (turned off and on to meet demand) and only produce power when the resource they depend upon is available
 - Peaking power units only operate at times of peak system demand, such as suppertime.
- This supply combination provides SaskPower with the flexibility to serve a demand for power than can swing from 500 to 1,000 MW daily – as loads drop overnight and rise in the morning

Balancing the system

- SaskPower must constantly and precisely balance the supply of power and the demands of customers.
- Interconnection with neighbouring jurisdictions can have a significant impact on the reliability of the interconnected systems.
- Reliability standards require SaskPower and other electric system operators
 to maintain sufficient transmission infrastructure and generating capacity to
 withstand the sudden loss of the largest generators in their fleets.

Wind Power Update

- 172 MW installed capacity
 - 3 operating facilities
 - Centennial Wind Power Facility 150 MW
 - Cypress Wind Power Facility 11 MW
 - SunBridge Wind Power Project 11 MW
 - 4.5% of installed/purchased capacity
 - 25 MW under development Red Lily Wind Project
- SaskPower is gaining first hand experience with the production characteristics of wind power on a relatively large scale
 - Variable energy production
 - Non-dispatchable
- Many developers are pursuing a PPA with SaskPower
 - Many have secured land leases
 - Many are conducting wind power studies
 - Level of interest exceeds system needs
- Interest in a First Nation policy framework
- Considerable interest in small wind turbines by individual consumers and the turbine suppliers

Operational Challenges – Wind

Operational Challenges - Wind

Wind Output for the week starting January 29, 2007

Operational Challenges - Wind

Wind Output for the week starting July 16, 2007

Operational Challenges - Wind

Wind Output for the week starting September 24, 2007

Wind Power Strategy

- Announced in 2007
- Established a Wind Power Integration and Development Unit (WPIDU)
 - Impacts on the electric system and tie-lines
 - Capacity benefits
 - Use of hydro stations for shaping wind power
 - Wind forecasting
 - Load shaping/following & ancillary service costs
 - Investigate wind power storage technologies
 - Practical limits in the quantity of wind power
 - Regional dispersion of wind power
- Continue work on previously selected projects (Red Lily Wind Project)
 - Decline all other large wind power proposals
 - Net Metering Policy still available for small projects
- Issue a Wind Power Deployment Strategy in 2009

Key WPIDU Findings

- Up to 200 MW of wind power can be added in the short term
 - Operational impacts should be manageable
 - Additional costs will be incurred
- All new wind power projects must be curtailable
 - Avoids impacting must-run baseload units
 - Provides operating flexibility
 - Helps to manage tie-line flows
 - Unit curtailments increase as more wind power capacity is added
- 15% capacity factor is reasonable for capacity planning
 - 20% winter rating
 - 10% summer rating
- Storage technologies are not yet commercially viable
- Wind power forecasting needs to improve
- Limited ability for hydroelectric plants to shape wind power
- Large wind farms are the most economical way to deploy wind

Wind Power Deployment Strategy

- Procure up to 200 MW of curtailable wind power
 - Issue an RFP for 175 MW through the Green Options Plan
 - Select wind power project(s) based on lowest cost
 - Oversight by a fairness advisor
 - Allocate 25 MW to the Green Options Partners Program
- Investigate ways to improve wind power forecasting
- Monitor and strategically support energy storage technologies
- Consider wind power when planning transmission upgrades
- Continue to facilitate small customer-installed units
 - Applicable for units up to 100 kW in size
 - 2 Program initiatives:
 - Net Metering Program
 - Small Power Producer Policy
 - Provincial grants are available to help defer costs

Wind Power Deployment Strategy

Implications:

- \$1.0 to \$1.4 Billion Power
 Producers' Agreement cost over 25 years
- Minimal impact on long term rates
- Double the planned wind power capacity
 - Increase wind capacity to 8.5% by 2014
- Reduce greenhouse gasses by an estimated 225,000 tonnes/year

Hydroelectric Power Update

854 MW installed capacity

- Saskatchewan River System
 - Coteau Creek 186 MW
 - Nipawin 255 MW
 - E. B. Campbell 288 MW
- Churchill River System
 - Island Falls 102 MW
- Athabasca System
 - Wellington 5 MW
 - Waterloo 8 MW
 - Charlot River 10 MW
- 22% of installed/purchased capacity

Hydroelectric Power Update

- The last hydro station built in Saskatchewan was Nipawin Hydroelectric Power Station in 1982
- SaskPower is currently investigating two hydro projects in the province:
 - Elizabeth Falls
 - 42 50 MW run-of-river plant on the Fond-du-Lac River
 - Black Lake First Nation
 - Pehonan Hydro Electric Project
 - 200 250 MW project on the Saskatchewan River d/s of "the Forks"
 - A project partnership has been established:
 - James Smith Cree Nation
 - Chakastaypasin First Nation
 - Peter Chapman First Nation
 - Brookfield Renewable Power Corporation
 - Peter Kiewit Sons Co.

Hydroelectric Power Update

- From 1982 to 1988, SaskPower investigated hydro power potential in Saskatchewan
 - Identified a potential inventory of 3,240 MW:
 - Saskatchewan River: 2,053 MW
 - Churchill River: 734 MW
 - Athabasca River System: 453 MW
- In 2006, SaskPower undertook a study to identify northern hydro projects within 25 km of a transmission line or load centre
 - 27 sites were identified
 - 13 were 10 MW or larger with a capacity factor of at least 80%
 - 7 were between 2 MW and 10 MW
 - 10 were less than 2 MW
- SaskPower has not been active in the development of other hydro opportunities

