On the Road to Net Zero Energy Homes

Rob Dumont, Ph.D.

robdumont@hotmail.com

Based on a talk given at

<u>University of Nairobi</u>
<u>Dept. of Architecture and Building Science</u>
<u>May, 2009</u>

Why should we be interested in Net Zero Energy Homes?

1. Global warming

2. Global warming

3. Global warming

Other reasons

- By 2016, all new houses in the United Kingdom will have to be carbon neutral or net zero energy
- The American Institute of Architects AIA has called for all new buildings to be carbon neutral by 2030
- Saskatchewan currently may have the highest carbon footprint of any jurisdiction in the world (72 tonnes of carbon dioxide per capita per year) [the world average is about 7 tonnes per capita per year]

Audience Question

How many homes in Nairobi are solar heated?

Saskatoon, Saskatchewan

Comparison of Climates (data from www.retscreen.ca)

	Nairobi	Saskatoon, Saskatchewan
Annual Average Temperature (°C)	18.9	2.0
Annual Solar Radiation on a Horizontal Surface (GJ/m2)	7.8	5.1
Altitude (meters)	1600	500

Nairobi is considerably warmer and considerably sunnier than Saskatoon

Comparison of Climates (data from www.retscreen.ca)

In Saskatoon, there is usually snow on the ground for 5 months of the year.

	Nairobi	Saskatoon, Saskatchewan
Outdoor Design Temperature for Heating Systems (°C)	+11.0	-35.0

February 2005, Saskatoon

More than the sidewalks had to be shovelled that day. (Normally the snow will blow or melt off.)

Comparison of Climates (data from www.retscreen.ca)

	Nairobi	Saskatoon, Saskatchewan
Outdoor Design Temperature for Cooling Systems (°C)	+28.1	+35.0

Question

- Is there a more ideal climate in the world than Nairobi?
- Nairobi is very sunny, not too warm and not too cold, gets adequate rainfall, is not too humid, and it never snows. A well-designed building in this climate needs neither space heating nor space cooling. Extremely few places in the world can make that claim.
- Design with Climate by Victor Olgyay has an excellent discussion about architectural design and climate around the world.

Olgyay's Four Bioclimatic Zones

- Temperate
- Cool
- Hot Humid
- Hot Dry

Kenya has all 4 zones!

Energy Needs for Buildings

- Space heating
- Space cooling
- Domestic Hot Water
- Cooking
- LAME (Lighting, Appliances, and Miscellaneous Electricity)

Energy Needs for Well-designed Buildings in Nairobi

- Space heating X
- Space cooling X
- Domestic Hot Water
- Cooking
- LAME (Lighting, Appliances, and Miscellaneous Electricity)

Exterior lattice used on Nairobi Kenya Polytechnic Classroom Building as a sunscreen

Exterior Window Shading University of Nairobi

Curtain Wall in a Hot, Sunny Climate = Big Cooling Loads (in a country with frequent power outages)

Some examples of cold-climate low energy houses

 1977 Saskatchewan Conservation House Regina, Saskatchewan, Canada

Note: Active Solar System Vacuum Tube Collectors on South Side, and insulating shutters on south windows

Rule of Thumb for Solar Collectors

- A good rule of thumb is that solar collectors should face toward the equator.
- The tilt angle from the horizontal should be equal to the latitude angle plus or minus about 20 degrees.
- In Saskatchewan, the latitude angle of the major cities is about 50 degrees.
- In Saskatchewan we often tilt solar collectors at about 70 degrees to favour solar collection in the winter and to help keep snow off the collectors.

Comparison of Annual Solar Radiation

- Saskatoon:
- Horizontal Surface

5.1 GJ/m²

- South facing surface
- tilted at 70 degrees to the horizontal
 6.5 GJ/m²

Nairobi Horizontal 7.8 GJ/m²

Saskatchewan Conservation House

Lessons Learned

- 1. Passive features worked very well.
- On sunny days the space heating was mostly covered by passive solar gain from the modest south windows, which were double glazed with exterior insulating shutters.
- 2. Much more work was needed to reduce domestic hot water loads and electricity usage (LAME)
- 3. Active solar system was too complicated.

Dumont Residence, Saskatoon, 1992

Features

- 1. "The best insulated house in the world" (at the time it was built in 1992)
- Attic insulation (600 mm of cellulose fibre-- R80)
- Wall insulation (400 mm of blown cellulose—R60)
- Basement wall insulation (400 mm—R60)
- Basement floor insulation (235 mm—R35)
- Approximately 8 tonnes of cellulose insulation used in the house

- 2. High performance windows
- Triple glazed with two low e coatings, two argon gas fills, non-metallic spacer bars, wood frames and casement design
- 3. Well-sealed building envelope (0.47 air changes per hour at 50 pascals)
- 3. Passive direct gain solar system (11.6 square metres of south window)
- 4. 15.6 square meters of active solar glycol based solar collectors with a 3000 litre water based heat storage tank.

- 5. High effectiveness (85%) air to air heat exchanger with low energy use brushless direct current motors.
- 6. Relatively energy efficient appliances
- 7. Compact fluorescent lighting
- 8. Relatively low water use appliances and exterior landscaping
- 9. Detached garage with roof sloped to accept photovoltaic panels at a later date
- 10. Low embodied energy through use of wood products (roof, siding, finish flooring, preserved wood foundation, cellulose insulation [8 tonnes])

Lessons Learned

- 1. Insulation and passive features worked well.
- 2. A greater passive solar contribution could be achieved with somewhat larger south facing windows and newer windows with better low e coatings and gas fills.
- 3. More energy efficient appliances would be helpful.

Factor 9 Home -- 2007

 Saskatchewan home designed to use 90% less energy and 50% less water than the average Saskatchewan home

Factor 9 Home:

Conventional appearance, high performance

Why Factor 9?

- This is the number that is needed for global sustainability.
- Future world population growth: Factor 1.5
- Future world consumption growth per person: Factor 3
- Future reduction needed in world GHG production: 2
- $-1.5 \times 3 \times 2 = 9$

Cross Section Showing Water Storage Tanks in the Crawl Space

Thermal Resistance Values for the Factor 9 Home

- Attic R80 (RSI 14)
- Walls R34.5 (RSI 6.1)
- Basement Walls R50 (RSI 8.8)
- Basement Floor R11.4 (RSI 2)

Sustainable Energy Features

- Passive solar space heating through south windows
- Active solar space and water heating through south vertical solar heating panels (21 sq.m.) with 2400 litre heat storage tank
- Orientation of the roof to the south so that photovoltaic panels can be placed as the cost comes down
- Extraction of cooling from the 15 ft (4.5 metre) deep pilings under the house

Other energy efficiency measures

- Energy Star White Appliances
- Compact Fluorescent Lamps
- Drain Water Heat Exchanger
- Air to air heat exchanger with brushless DC motors
- The Energy DetectiveTM whole house electricity monitoring device
- Fan coil with oversized heating/cooling coil and brushless DC fan motor

Energy Efficiency & Renewable Energy Features

Attic
R 100 (RSI 17.6)

Walls
R 56 (RSI 9.9)

Basement Floor R24 (RSI 4.2)

- Triple (S) and Quadruple (N,E,W) glazed windows with low e and argon gas
- Passive solar space heating
- Active solar space and water heating
- Photovoltaic system for electricity generation

Other energy efficiency measures

- Energy Star Appliances
- Compact Fluorescent Lamps
- Drain Water Heat Exchanger
- Air to air heat exchanger with high effectiveness
- Whole house electricity monitoring device

Projected Net Annual Energy Consumption:

Zero

 Grid connected photovoltaic system will generate enough energy in a year to compensate for all the purchased energy used by the house. No natural gas or other fossil fuels are used on site.

Interesting Web Site

Next page shows "live" summary of the output of the 6.2 kilowatt peak photovoltaic system for the day of September 2, 2009

Available at <u>www.riverdalenetzero.ca</u>

VIEW Simple Detail

As of: 8:25 PM Sep 02, 2009

Generating

0 W

System Size: 5.6 kW DC

Historical 0
Generated 26.2 kWh

5.0

2.5

4 AM 8 AM 12 PM 4 PM 8 PM

Greenhouse Gases Avoided Since Installation Feb 19, 2008

Equivalent to:

The energy to operate a TV for 79,814 hours.

The pollution an average passenger car emits over 419 days.

CO, 11 484 kg

Measured Energy Performance of the Demonstration Houses

	Purchased Annual Energy (kWh/m²)		
Saskatchewan Conservation House (1977)	76 (24,100 Btu/ft²)		
Dumont Residence (1992)	47 (14,900 Btu/ft²)		
Factor 9 Home (2007)	33 (9,500 Btu/ft²)		
Riverdale Net Zero (2009) Sold and occupied in 2009	0 (projected) (0 Btu/ft²)		

Attic Insulation Levels (English Units)

Approximate Incremental Construction Cost for Energy Efficiency and Renewable Energy Features

	Approximate Incremental Cost (excl. land) & Net Annual Purchased Energy Performance		
Dumont Residence (1992)	7%	(14,900 Btu/ft ²)	
Factor 9 Home (2007)	12%	(9,500 Btu/ft ²)	
Riverdale Net Zero (2009)	35% (0 Btu/ft²) (Estimated incremental cost of about \$110k, mostly for PV and active solar systems)		

Mill Creek House, Edmonton Net Zero Design

- Address: 9805 84th Ave
- Very high energy conservation levels
- Simplified mechanical design emphasizing more passive solar
- Lower incremental cost

View from Southeast in July with the solar awnings in the low position (Sketchup drawing) (Note how the solar shading is accurately generated by Sketchup)

View from Southeast in December with photovoltaic panels up

North side of Mill Creek House

South side

Integrated Design of South Awning and Photovoltaic Panels which are tiltable.

Mill Creek House

R60 walls, added thermal mass, high SHGF windows, "oversized" south windows

Incremental Cost for Energy Features at the Mill Creek House

- \$65 k vs about \$110 k for the Riverdale Net Zero House
- Why are costs so dramatically reduced even though houses are roughly the same size?
- A. Greater use of passive systems (more high performance South glass)
- B. More thermal mass (primarily concrete floor topping)
- C. Size of active solar thermal system was reduced
- D. Cost of photovoltaic panels has dropped about 40% in the last year.

More Information on recent demonstration houses

- Factor 9 Home
- www.factor9.ca
- Riverdale Net Zero Home www.riverdalenetzero.ca

Mill Creek House

http://greenedmonton.ca/mcnzh-solar-awning-part-01

Answer to the Question: How many homes in Nairobi are solar heated?

 They all are. All homes in Nairobi are already about 99%% solar heated

(The temperature in Nairobi would be -273 °C if the sun were not there)

All that Nairobi's space heating systems have to do is raise the temperature of homes an average of about 3 °C.

Free Computer Programs for Estimating Performance of Renewable Energy Systems

- www.RETSCREEN.ca
- Modules to estimate annual performance of
- Domestic Hot Water Systems
- Solar Swimming Pool Systems
- Passive Solar Heating Systems
- Solar Photovoltaic Systems
- Wind Energy Systems

RETScreen® Solar Resource - Solar Air Heating Project

Site Lati	tude and Collector Orientation		Esti	mate
Neare	est location for weather data		Nairobi/	/Dagoretti
econologiitu	de et proje st lacquer, or wearne	ON1	, ta	1 2
D	ૺૺૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૺ૽૽ૡ૽૽ૼ૱ઌ૽ ૺૺૺૺૺૺૺ૾૽ૡ૽૽ૺૺૺૺૺૺ૾ૺૺઌ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ૽૽ૡ			0.0
0	i desimilati di di d			20.

Monthly Inputs

:hly age ature		Fraction of month used	Monthly average daily radiation on horizontal surface	Mont avera temper
:)	Month	(0 - 1)	(kWh/m²/d)	(°C
0	January	1.00	6.45	18.
8	February	1.00	6.55	18.
4	March	1.00	6.19	19.
2	April	1.00	5.25	19.
8	May	1.00	4.64	17.
3	June	1.00	4.19	16.
6	July	1.00	3.59	15.
9	August	1.00	3.93	15.
3	September	1.00	5.28	17.
5	October	1.00	5.61	18.
4	November	1.00	5.31	18.
1	December	1.00	6.13	18.

ual			Ann
2	Solar radiation (horizontal)	MWh/m²	1.9
2	Solar radiation (tilted surface)	MWh/m²	1.9
8	Average temperature	°C	17.

Kenya Weather Data available in RETSCREEN

- Garissa
- Kitale
- Lodwar
- Mandera
- Mombasa
- Nairobi
- Voi

Some Conclusions

- 1. Net Zero Energy Homes have now been built in Canada and the U.S.A.
- 2. The technology has been proven.
- 3. Costs of photovoltaic panels are declining.
- 4. The world will not be sustainable without sustainable buildings, because buildings consume so much energy both in their construction and in their ongoing energy use.

Acknowledgement of Sponsors

- Office of Energy Conservation, Government of Saskatchewan
- Communities of Tomorrow, Saskatchewan
- Saskatchewan Research Council
- Natural Resources Canada
- Canada Mortgage and Housing Corporation
- Their participation is gratefully acknowledged