Nuclear in Saskatchewan

Saskatoon EMTF March 4, 2009

Dr. Ron Oberth

Director
Marketing and Business Development

Today's Agenda

Introduction to AECL

Nuclear Power 101

Nuclear Developments Worldwide

Economic Impacts of Nuclear Power

Public Attitudes on Nuclear Power

Long Term Used Nuclear Fuel Management

CANDU among top Canadian inventions

Atomic Energy of Canada Limited

Global Nuclear Technology Company

- Established in 1952 by Government of Canada
- More than 5000 employees mainly at Chalk River and Mississauga, Ontario

Our Business

- CANDU Reactor Sales and Services
- Research & Development
- Nuclear Waste Management
- Medical Isotope Production

Where it all began...

 Canada was the first country outside USA to achieve a nuclear chain reaction -September 5, 1945 at Chalk River

- Two Canadian research reactors followed:
 - > 1947 NRX (National Research Experimental)
 - > 1957 NRU (National Research Universal)
- NRU is still used today for CANDU development, research, and isotope production

Chalk River

Nuclear Medicine

Cancer therapy invented in Canada:

- 12 million cancer treatments a year using Cobalt-60
- Pioneered by Dr. Johns in Saskatchewan with first cobalt cancer therapy treatment on November 8, 1951

AECL produces more than 60% of the world's supply of radioisotopes

 More than 70,000 people a day around the world receive advanced medical diagnostics or cancer treatments

Canadian Nuclear Industry

- Canada has been a nuclear industry leader since 1940's
 - Exported seven CANDU reactors in the past 10 years
 - World's largest exporter of isotopes & uranium
- \$5 billion/year industry
 - **-30,000** workers, 150 companies
- 20 CANDU reactors in Canada
 - -Over 50% of generation in Ontario is nuclear
 - -17% of generation across Canada is nuclear

CANDU - An International Success

Nuclear Share of Electricity Production

What the future holds

Nuclear Renaissance is here:

- 440 nuclear power plant units operating worldwide
- 30 nuclear power plant units under construction
- 200 plants planned or proposed

World Nuclear Association predicts that by 2030 there will be between 700 and 1500 nuclear plants worldwide

Worldwide Growth in Nuclear

- New growth North & South America, Europe
- Continued growth Asia & Russia
- New interest in many developing countries

Key Driver of Nuclear Renaissance

The Environment

- Nuclear plants do <u>not</u> produce green house gases (GHG) or other harmful emissions
- CANDU units in Canada save 90 million tonnes of GHG emissions <u>annually</u>
- Equal to 18 million cars and trucks
 - 12% of Canada's total GHG production

The Planet Isn't Waiting

Canada's GHG Emission Breakdown by Sector

Nuclear Environmental Benefits

 Nuclear environmental impact very low / equivalent to renewables - especially wind & large hydro

Nuclear Safety

- In 40 years of nuclear power production in Canada no member of the public has been harmed by radiation from a nuclear power plant or waste storage facility
- Nuclear power is a highly regulated industry to protect the health and safety of workers/public and to protect the environment
- CANDU facilities are designed to withstand disaster events (e.g. earthquakes, plane crashes)
- Additional enhanced public security / anti-terrorism features are incorporated in the new Advanced CANDU Reactor (ACR) design

CANDU®

Understanding the Technology

CANDU Products

CANDU 6/EC6

- 700 MW net output
- Natural uranium fuel
- Long track record
- Lowest risk
- Licensed in five countries

ACR-1000

- 1085 MW net output
- Enriched U fuel (2.4%)
- New advanced design
- Lower capital cost
- Improved operations & economics

Making Electricity

Inside a CANDU Nuclear Power Station:

The Reactor Core

Calandria

CANDU Fuel:

A little bit goes a long way

1 CANDU fuel bundle (50 cm long, 23 kg)

Energy Content Comparison

1 CANDU fuel bundle (50 cm long, 23 kg)

= 400 tonnes coal

1000 tonnes CO₂ 1 tonne particulates 8 tonnes acid gas

 $60,000 \text{ gal} = 10 \text{ million } \text{ft}^3$ oil

natural gas

600 tonnes CO₂ 1 tonne acid gas

Electricity Sources in Ontario (2007)

- Nuclear 81,000 GWh
- Hydro 33,000 GWh
- Coal 28,000 GWh
- Oil and Gas, Other 15,000 GWh

Source: Independent Electricity System Operator (IESO), 2007

Electricity Sources in Canada (2007)

Global Electricity Generation

Nuclear power produces 16% of global electricity and is the world's third largest source of electricity

Source: OECD/IEA World Energy Outlook (2006)
Data for the year 2004. Page 492.

Filling the Gap: What are the tradeoffs?

All of these energy sources are part of the solution to the energy crisis

Cost Comparison

Source: Canadian Energy Research Institute (CERI), September 2006

Saskatchewan Electricity Supply

- SaskPower has a generating capacity of 3,200 MW:
 - three coal-fired plants
 - four natural gas-fired plants
 - seven hydroelectric plants
 - two wind facilities
- SaskPower must replace up to 2800 MW of retiring fossil-fired generation between 2020 and 2030
- Provincial GHG-reduction programs and strong growth of the Saskatchewan economy (including development of oils sands in NW Saskatchewan) could increase this new supply need
- SaskPower was requested by the new government to prepare a Long Range Plan for energy supply for the period of 2015 to 2050 and to consider provincial economic impacts

Nuclear Update -East

Ontario

- Ontario Government is conducting a competitive tender process to select the supplier for next nuclear plant in Ontario
- The Ontario Government announced that the next plant would be located at the Darlington site and would be operated by OPG
- Decision on the winning bid from among Canadian, French and US suppliers is expected in June 2009 – three bids received on Feb 27-09

New Brunswick

- AECL and partners completed a Feasibility Study in 2008 on constructing an ACR-1000 at the Point Lepreau Site in New Brunswick to supply power to the maritime provinces and to New England States.
- NB Government announcement on this Project is expected in Spring 2009 pending confirmation of an investor group

Nuclear Update - West

Alberta

- Alberta Government appointed a three person expert panel to advise on feasibility of introducing nuclear power to the province – report will be released in March 2009 to form the basis for public debate.
- Bruce Power Alberta is seeking approval for a nuclear plant at a site near Peace River to supply the power grid as well as oil sands projects.

Saskatchewan

- Saskatchewan Government recently announced the formation of a "Uranium Development Panel" to identify opportunities to expand the nuclear industry in Saskatchewan beyond Uranium mining – this could include a nuclear plant to supply the provinces expanding economy
- Bruce Power released their nuclear feasibility study "Saskatchewan 2020" in November 2008 which concluded that:
 - nuclear could contribute at least 1000 MWe of generation by 2020.
 - North and South Saskatchewan Rivers were identified as viable water sources (Prince Alberta economic sub-region)

Economic Impacts of Nuclear

Saskatchewan 2020 Feasibility Study (Bruce Power, November 2008):

- Base case: two-units of 1000 MWe each
- EA and Construction Phase (nine years)
 - 20,000 direct, indirect and induced jobs
 - Contribute \$4B to provincial economy
- Operations Phase (60 years)
 - 1000 full time positions
 - 900 indirect jobs
 - \$240 M annual contribution to provincial economy

Public Attitudes to Nuclear

Canadian Nuclear Association Poll (Feb/08)

<u>Saskatchewan</u> <u>Ontario</u>

Support – 55%Support – 65%

Oppose – 41%Oppose – 34%

POLLARA Poll for Bruce Power (800 residents in July/08)
 Saskatchewan

- Support 52%
- Oppose 39%

Long Term Used Nuclear Fuel Management

Pool Storage of Used Fuel

Six to ten years in pools to allow decrease in decay heat generation (from >30,000 W / bundle to ~5 W / bundle at 10 years)

Total used fuel from <u>all</u>
Canadian reactors produced
so far would fit in a football
field to the height of one player

Dry Storage Facilities

Geologic Disposal - Int'l Progress

Sweden – Two sites in granite rock under evaluation.

USA – One site selected in tuff rock. License application 2008

Finland – One site selected in granite rock under evaluation

Management of Used Fuel in Canada

 Nuclear Waste Management Organization (NWMO) studied three approaches for the long-term management of used fuel and issued a recommendation to the government on Nov. 15, 2005:

Extensive public consultation in four nuclear provinces

Long Term Plan approved by Federal Government - July 2007

Preliminary Site Selection activities underway

On-site storage: 30 years

Centralized storage and demonstration of geologic disposal: 30 years

Emplacement in deep geologic repository: beyond 60 years

Deep Geologic Repository for Used Fuel

Canadian Shield

Decrease in Radioactivity in a Used Nuclear Fuel

Path Forward for Saskatchewan

- Nuclear power offers huge opportunities for Saskatchewan:
 - CANDU reactors for electricity and oil-sands
 - adding value to the fuel cycle chain (mining, refining, enrichment, fuel manufacturing,)
 - used fuel management (fuel recycle)
- Opportunity for developing nuclear science and engineering program at U of S:
 - Complement and leverage work at Chalk River and at other universities
- AECL can be a partner for expanding the Saskatchewan nuclear industry and can work with Saskatchewan universities to set up a nuclear R&D Center of Excellence.

Resources

Where can you find more information?

- AECL: http://www.aecl.ca
- CANDU Canada: http://www.canducanada.ca/
- CANDU Owners Group: http://www.candu.org/
- Voice Your Choice: http://www.canducanada.ca/eng/voice.html
- Organization of CANDU Industries: http://www.oci-aic.org
- Nuclear Waste Management Organization: http://www.nwmo.ca
- Canadian Nuclear Association: http://www.cna.ca
- Canadian Nuclear Society: http://www.cns-snc.ca
- Canadian Nuclear FAQ: http://www.nuclearfaq.ca
- CANTEACH: http://canteach.candu.org/
- Women in Nuclear: http://www.win-global.org
- Or, contact us directly:

Sonja Galton 905-823-9060 Ext. 36191 galtonso@aecl.ca

Questions

Do you have any questions?

AECL & CANDU Made-in-Canada Success Stories

