Why We Should Support Nuclear Power

Chuck Edwards

Microsoft PowerPoint

Microsoft Update Western PowerPoint

Warning:

Side effects include drowsiness, nausea, light-headedness, and, in rare instances, a diminished will to live.

Nuclear power is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

Tonnes CO₂ per person (2005)

•	Quebec	12
•	Yukon	13
•	BC	15
•	Ontario	16
•	PEI	17
•	Manitoba	17
•	Nfld. & Lab.	20
•	NWT & Nunavut	21
•	Nova Scotia	24
•	New Brunswick	28
•	Alberta	71
•	Saskatchewan	72

SaskPower Generation

• 3 X coal	G	G	4		W	V
JAGUA	U	O.		N/L	V	V

- 4 x natural gas
 327 MW
- 7 x hydro 853 MW
- 3 x wind 172 MW

Alternative Energy

- Alternative energy = cleaner energy
- Cleaner = lower CO₂ emissions

Prudent & Judicious

- Solar
- Wind
- Biomass
- Hydro
- Nuclear

Solar Power

- Clouds?
- Night?
- Site area?
- Expensive
 - Utility
 - Home

П

Solar Power

- Clouds?
- Night?
- · Site area?
- Expensive
 - Utility
 - Home

Wind Power

- Discontinuous
- NIMBY
- Site area?

Biomass

Land usage?

Biomass

NPP
(Net Primary Production)

10 Terawatts

10 Terawatts =100% of agricultural land

Hydro

- Weather
- NIMBY

Role of "Renewables" in the United States

Role of "Renewables" in the United States

- Solar
- Wind
- Biomass

Royal Academy of Engineering Electricity Generating Costs (pence/kWh)

Nuclear	2.3
Onshore wind farm	3.7
Offshore wind farm	5.5
Wave and marine	6.6

Royal Academy of Engineering Electricity Generating Costs (pence/kWh)

Nuclear	2.3
Onshore wind farm	3.7
- With stand by capacity	5.4
Offshore wind farm	5.5
- With standby capacity	7.2
Wave and marine	6.6

Role of "Renewables"

- Solar
- Wind
- Biomass

Prudent & Judicious

Nuclear

Life Cycle CO₂ Emissions (gram CO₂ per kWh)

Coal thermal 975

Oil thermal 742

LNG thermal 608

Photovoltaic
 53

• Wind 29

Hydro11

Nuclear

Range of Life Cycle CO₂ Emissions (gram CO₂ per kWh)

•	Lignite	1311 - 836	

• Coal 1309 - 755

31

• Wind 48 -

· Noveless

Range of Life Cycle CO₂ Emissions (gram CO₂ per kWh)

•	Coal	1182 - 7	790

Photovoltaio	731 - 1	2
Photovoltaic	/31-1	J

- Natural Gas 511 389
- Wind 124 7
- Biomass 101 15
- Nuclear 59 2
- Hydro 48 2

Relative CO₂ Emissions (Life Cycle of Fuels)

•	IC, "clean" gasoline	100
•	Electrical/IC, "clean" gasoline	35
•	Fuel cell, "clean" gasoline	35
•	Fuel cell, methanol from NG	35
•	Fuel cell, H ₂ from NG	24
•	Fuel cell, H ₂ from biomass	12
•	Fuel cell, H ₂ from nuclear	0

Nuclear power is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

US Electricity Production in 2002 Fuel Cost (¢/kWh)

Natural Gas

3.44

Nuclear

0.45

Royal Academy of Engineering Electricity Generating Costs (pence/kWh)

Nuclear	2.3
Gas-fired CCGT	2.2
Coal-fired pulverized-fuel	2.5
Coal-fired circulating fluid bed	2.6

Royal Academy of Engineering Electricity Generating Costs (pence/kWh)

Nuclear	2.3
Gas-fired CCGT	2.2
(with carbon tax)	3.4
Coal-fired pulverized-fuel	2.5
(with carbon tax)	5.0
Coal-fired circulating fluid bed	2.6
(with carbon tax)	5.1

University of Chicago Study Cost of Electricity, ¢/kWh

Coal-fired	3.3 to 4.1
(no carbon tax)	
Gas-fired	3.5 to 4.5
(no carbon tax)	
Nuclear	4.7 to 7.1
(first-of-kind engineering)	

University of Chicago Study Cost of Electricity, ¢/kWh

Coal-fired	up to 9.1
(greenhouse gas or carbon tax)	
Gas-fired	up to 6.8
(greenhouse gas or carbon tax)	
Nuclear	3.1 to 4.6
(series engineering)	

Nuclear power is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

Nuclear power is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

Replace Fossil Fuels in Base Load Supply?

Wind	no
Solar	no
Biomass	no
"Clean" coal	no

Range of Life Cycle CO₂ Emissions (gram CO₂ per kWh)

Cool	350 - 210
Coal	330 - 210

Mutului Gub EEV - 110	•	Natural	Gas	220 - 110	0
-----------------------	---	----------------	-----	-----------	---

- CCS 70 75
- Solar 20 30
- Hydro 5 15
- Wind 7 15
- Nuclear
 2 10

Nuclear power is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

Nuclear Power Reactor Safety

- 10,000 reactor-years
- 32 countries
- 2 significant accidents

Nuclear Power Reactor Accidents

Chernobyl

- 25 April 1986
- Flawed reactor design
- Inadequate training
- Procedure violation
- Steam explosion
- Graphite fire
- 5% of core released
- 31 immediate deaths
- ~10 deaths since

Nuclear Power Reactor Accidents

Three Mile Island

- 28 March 1979
- Equipment failure
- Inadequate instruments
- Operator confusion
- Cooling water leak
- Heat build up in core
- Fuel assemblies melted
- Small radiation release
- No deaths
- No injuries
- No health effects

Accident Statistics in Primary Electricity Production

<u>Fuel</u>	Immediate Fatalities	Who?
	(1970-92)	
Coal	6400	Workers
Natural	1200	Workers
Gas		& Public
Hydro	4000	Public
Nuclear	31	Workers

Comparative Dose	Source/Effect
1 mSv/year	cosmic rays/none
2 mSv/year	natural background/none
3 mSv/year	inhaled radon/none
9 mSv/year	polar route/slight to none
100 mSv/year	total/cancer risk increase
1,000 mSv single dose	total/radiation sickness (but not death)

Comparative Dose	Source/Effect
1 mSv/year 0.5 mSv	cosmic rays/none
2 mSv/year	natural background/none
3 mSv/year	inhaled radon/none
9 mSv/year	polar route/slight to none
100 mSv/year	total/cancer risk increase
1,000 mSv single dose	total/radiation sickness (but not death)

Comparative Dose	Source/Effect
1 mSv/year 1.4 mSv	cosmic rays/none
2 mSv/year	natural background/none
3 mSv/year	inhaled radon/none
9 mSv/year	polar route/slight to none
100 mSv/year	total/cancer risk increase
1,000 mSv single dose	total/radiation sickness (but not death)

Comparative Dose	Source/Effect
1 mSv/year	cosmic rays/none
2 mSv/year	natural background/none
3 mSv/year 3.1 mSv	inhaled radon/none
9 mSv/year	polar route/slight to none
100 mSv/year	total/cancer risk increase
1,000 mSv single dose	total/radiation sickness (but not death)

Comparative Dose	Source/Effect
1 mSv/year	cosmic rays/none
2 mSv/year	natural background/none
3 mSv/year	inhaled radon/none
9 mSv/year 9.3 mSv	polar route/slight to none
100 mSv/year	total/cancer risk increase
1,000 mSv single dose	total/radiation sickness (but not death)

Pervious Surround Concept

Public Exposure to Radon

Natural Uranium

U-238

U-235

U-234

99.275%

0.720%

0.005%

Uses for Depleted Uranium

- aircraft counter weights
- yacht keels
- radiation shielding

Uses for Depleted Uranium

- aircraft counter weights
- yacht keels
- radiation shielding
- armour-piercing shells

Depleted Uranium Projectiles

- Gulf War
- Kosovo

Exposure to Depleted Uranium

- External
- Ingestion
- Inhalation

Nuclear Materials

Uranium

- power reactor fuel = 3% to 4% U-235
- weapons grade = >90% U-235

Nuclear Materials

Plutonium

- weapons grade = >93% Pu-239
- spent power reactor fuel = ~60% Pu-239

~40% Pu-240

Uranium Perspective

1 nuclear weapon = 5 t

Annual electricity production = 66,000 t

HEU Agreement

HEU Agreement

- Between Russia and the United States
- Russia blends HEU down to LEU
- Cameco purchases LEU
- Cameco sells LEU as reactor fuel

8000 decommissioned

Nuclear power is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

We should support nuclear power because it is

- Safe
- Clean
- Cost competitive (and stable)
- Sustainable
- A proven base load option

EMTF END

Chuck Edwards