

Working for a sustainable future...

NUCLEAR POWER?

WHY? WHY NOT?

Ann Coxworth
Saskatchewan Environmental Society
For the Energy Management Task Force
5 March 2008

Suggested reasons to favour nuclear power

Cheap

Clean, safe

No greenhouse gases

No other options for meeting energy needs

Nuclear power,

the basics

Atoms and Isotopes

- The core (nucleus) of each atom contains protons (positively charged). Most also contain neutrons (neutral charge)
- Elements are defined by the number of protons in the nucleus of their atoms e.g. hydrogen has 1, uranium has 92.
- But each element can exist in different isotopic forms, i.e. with a different number of neutrons in its nucleus

- Different isotopes of the same element are indicated by the superscript number beside their symbol that shows the total of the number of protons and neutrons.
- e.g H³ is an isotope of hydrogen with one proton and 2 neutrons.
- Different isotopes of a given element behave the same way chemically but have different radioactive properties.

Radioactivity

- Some isotopes are unstable and decay naturally, throwing off part of their core or energy en route to a more stable structure.
- Some emit alpha particles, composed of 2 protons and 2 neutrons;
- Others emit beta particles, which are electrons;
- Some emit gamma radiation, which is just energy.

Alpha radiation

- The emitting nucleus loses 2 protons, so it changes into a different chemical element.
- Alpha radiation cannot penetrate far. It is stopped by a sheet of paper.
- However it produces ionization and can be very harmful if it gets inside your body.

Beta radiation

The emitting nucleus loses an electron by converting a neutron into a proton, so a different chemical element is formed.

Beta radiation is more penetrating than alpha. It requires a thin sheet of aluminum to stop it.

Gamma radiation

No particles are emitted, so there is no change in the identity of the element.

Gamma radiation is very penetrating (similar to X-rays). It requires lead shielding to protect operators.

Half-life

- Radioactive decay processes take place at different rates.
- The half-life is the time it takes for half of any given quantity of nuclei to decay.
- Half-lives range from a fraction of a second to many thousands of years.

Decay chains

Many heavy isotopes go through a series of radioactive decay steps, each with its own half-life, before reaching a stable form.

U²³⁸ decay

■ U^{238} alpha, 4.5×10^9 yrs \rightarrow Th²³⁴

Th²³⁴ beta, 24.5 days \rightarrow Pa²³⁴

Pa²³⁴ beta, 1.14 min \rightarrow U²³⁴

U²³⁴ alpha, 2.33x10⁵ yrs \rightarrow Th²³⁰

How to get energy from a uranium atom

A few heavy isotopes are fissile – they can be made to split into pieces by hitting them with neutrons, releasing a lot of energy in the process.

U²³⁵, which constitutes 0.7% of natural uranium, is fissile.

Fission products

- Fission products are the pieces formed when the uranium atom splits. They are nuclei of smaller atoms, mostly in the form of highly unstable, radioactive isotopes.
- Additional neutrons are also produced in the fission process. These go on to split other uranium atoms, leading to a chain reaction

Chain reaction

In each fission process some mass is converted into energy

- If number of neutrons is not controlled you may get a runaway chain reaction (explosion)
- To tame the chain reaction, absorb some of the neutrons to get controlled release of energy

Simple nuclear fuel chain

Ore processing —— fuel prodn. —— reactor

U mine

used fuel

What's missing from this picture?

- It's not a "cycle"
- Uranium mine tailings
- Mill effluent
- Production of plutonium
- Depleted uranium
- Tritium emissions
- On-going management of used fuel

Mine wastes

Material from underground contains a mix of uranium and its decay products and various toxic chemicals

- Tailings placed in conical pits under water
- Mill effluent is cleaned to "acceptable level" (?) and released into surface waters

Plutonium

Natural uranium contains 99.3% U²³⁸ and 0.7% U²³⁵

In the reactor U²³⁸ absorbs neutrons to form U²³⁹, which beta decays to Np²³⁹, then to Pu²³⁹

So used fuel contains a mixture of uranium, fission products and plutonium

Plutonium can be separated out to use as fuel or for weapons

Depleted uranium

- Many reactors require enriched uranium (higher percentage of U²³⁵)
- Remnant after enrichment is "depleted uranium" (DU)
- Canadian U sold to US is enriched and DU goes into a stockpile
- Used for cladding of shells, bullets etc.

Tritium

- Operating CANDU reactors emit tritium, a radioactive isotope of hydrogen, formed by exposure of heavy water to radiation.
- Tritium is a beta-emitter with a 12 yr. halflife.
- CANDUs are emitting 100 times higher levels than Europe allows.

- "Tritiated water" behaves just like ordinary water and quickly spreads throughout the body.
- Studies suggest link to central nervous system birth defects and child leukemia.

Management of used fuel

Contains mix of uranium, fission products, plutonium

Initially, very brief exposure is fatal

For first several years most of radioactivity comes from short-lived fission products Handled remotely & stored in "swimming pools"

Later moved into "dry storage" on site.

Long-lived materials must be kept out of ecosystem for 100,000 years.

Potential for extraction of plutonium.

Biological effects of radiation

Some fission products mimic body components, e.g. strontium

Radiation can randomly break molecular bonds & damage genetic information of cell

Types of damage

- Carcinogenic Damaged cell may reproduce abnormally
- Teratogenic An irradiated foetus may develop abnormally
- Mutagenic If sperm cells are irradiated, genetic damage may be passed on to children, grandchildren, greatgrandchildren

What is the risk?

- Risks are generally proportional to radiation dose – there is no "safe" dose.
- Alpha radiation is about 20 times more damaging per unit dose than gamma.
- Alpha emitters have to be ingested into the body to cause harm.
- We can ingest them by breathing, drinking, eating or through skin lesions.

Potential sources of radioactive releases

- Uranium mining wastes, decay products
- Tritium from reactor operations
- Used fuel leakage from long-term storage
- Accident, sabotage or war damage to reactors or storage facilities
- Diversion of nuclear materials for nuclear weapons or "dirty" bombs

Can we manage the wastes safely?

Mining wastes?

Used fuel? – Canada has a plan!

Nuclear Waste Management Organization

- "Adaptive Phased Management" approach
- Continue to store at reactor sites
- Transfer to a central site (Ontario, Quebec, New Brunswick or Sask.?)
- Possibly temporarily store in shallow underground burial location
- Transfer to long-term storage deep underground

- Currently working on how to decide where disposal site should be
- Seeking a "willing community"
- Estimated date permanent disposal site ready to receive wastes is 2070.
- Decision about whether/when to seal up vault postponed to future generations.

Suggested reasons to favour nuclear power

- Cheap ?
- Clean, safe ?
- No greenhouse gases ?
- No other options for meeting energy needs?

Is it cheap?

- Ontario's Hydro's experience a multibillion dollar debt
- Uncertain costs for waste management
- End-use efficiency, distributed cogeneration and many renewables are cheaper than nuclear
- Cost of renewables falling dramatically

Is it clean, safe?

- Mine tailings
- Mill effluent
- Tritium emissions
- Used fuel management
- Security, Weapons potential

Is it free of greenhouse gas emissions?

- All energy sources have some associated GHG emissions
- Fossil fuels used in exploration, mining, milling, refining, enrichment, transportation, construction, decommissioning, waste management
- Emissions certainly much lower than from traditional coal plants, but not zero.

Are there better options?

- Manage demand through improved efficiency
- Distributed co-generation
- Renewables: One option "Photovoltaics on its own has the potential to replace nuclear power on the required timescale, even in the UK"
- Problem of intermittency is being solved

What do you think?

Where should our priorities for energy development lie?

Working for a sustainable future...

www.eqviroqmentalsociety.ca