City of Cornwall Social Housing Division Top 10 Energy & Water Saving Tips

in Multi-Unit Residential Buildings

Duncan Hill

Canada Mortgage and Housing Corporation

Andrew Pride

Minto Developments Inc.

Energy Use in Apartment Buildings

- Most apartment buildings constructed in 1960's 1970's
- poorly insulated, poor sealed building envelopes
- inefficient mechanical-electrical systems

First CMHC Study on Annual Energy Use in MURBs

- 20,665 ekWh per apartment
- 222 kWh/m2 (±60 kWh)
- 0.04885 kWh/m2/degree-day
- As intensive as single family houses

More Recent CMHC Study Energy Use - 133 bldgs Average = 238 ekWh/m²/year

CMHC SCHL

Energy Use Trends (per m²)

- Family buildings consume more than seniors
- Older buildings consume more than newer
- Larger buildings consume more than smaller
- Metro Toronto buildings generally consume more than those in other locations
- Toronto space heat about 100ekWh/m²

Annual Energy Use by Source

For Gas Heated (space & dhw) Buildings
 Electricity 27% of overall building energy use
 In-suite electricity use - 73% of total building electricity use

Natural Gas and Electricity proportion

Annual Energy Use by Source

• For electric heated buildings (with gas dhw)

Where Energy is Used:

Where the Heat Goes:

Where the Hot Water Goes:

(single family houses!)

40% of Overall Water use

faucets 33%

Source: DeOreo W., Mayer, P. "The End Uses of Hot Water in Single Family Homes from flow Trace Analysis

Water (hot and cold) Consumption

Average consumption = 182 m³/apartment/year

Where the Water Goes:

(Single family houses)

Source: AWWA

Why We Care:

Recurring Embodied Energy

Tip #1: Know Your Usage

Understand how much energy is used

- Understand where your energy is used
- Track your usage
- Same goes for water

Tip #1: Know Your Usage

Why Track Your Energy Use?

- Identify anomalies
- Responsible management of costs
- Confirm Meter Validity
- Estimate end-use
- Explore Time of Use consumption costs

Typical Seasonal Electrical Load

Typical August Electrical Load

Typical Daily Electrical Load

Typical Seasonal Gas Load

Typical Summer Gas (DHW) Load

Typical Annual Water Consumption

Typical Monthly Water Consumption

Typical Daily Water Consumption

Utility Bill Analysis

- Permits estimates of space heating, domestic hot water and electrical consumption
- Puts a perspective on potential energy and water saving measures
 - Is energy use reasonable?
 - Are savings possible?
- Need to know how other bldgs perform

Tip #2 Tighten Your Building

Simple air leak problems cause huge waste

- Easy to implement (in common areas)
- Priorities:
 - Top and Bottom of Building
 - Interior Shafts
 - Exterior Wall

Building Envelope

CMHC SCHL

Bottom: Parking Garage: Pipe and duct Hangers

Bottom: Floor Penetrations of Services

Ductwork through Slabs and Walls

Bottom: Garage Vestibule Doors

Bottom: Garage/Basement Areas

Rooftop Level: Stairwell Doors

Rooftop Level: Stairwell Doors

Rooftop Level: Stairwell Doors

Rooftop: Elevator Hoist Cables Wiring Conduits

Interior Shafts:

Interior Shafts: Why we care Air Pressure Profile - unsealed

Interior Shafts: Why we care Air Pressure Profile: sealed

Exterior Walls:

Exterior Walls:

Exterior Walls: Windows

Air Leakage Control Savings

CMHC-Ontario Hydro Study 1991:

Building 1: 30 years, 21 storeys, 240 apts

Building 2: 29 years, 10 storeys, 95 apts

Building	Annual energy Savings	Peak Load Reduction (kW)	Annual Cost Savings	Retrofit Cost	Payback (years)
1	164,870	85	\$9,656	\$54,816	5.7
2	63,340	42	\$6,107	\$38,000	6.2

Tip #3 Electrical Reductions

1. Lighting Retrofit

- Age old story new twist
- Relight with higher output product but overall
- Relight with emphasis on quality & energy
- 1-32 W, \$45, CFL can replace one 100W incandescent and save \$17 \$45 per year
- Occupancy sensors for parking garage and stairwells

Tip #4 Ventilation Control

Automate Corridor Ventilation

- Time clock control check with buildings dept.
- Use Variable Speed Drive technology & BAS
- Match Speed to Occupancy
- Combined example (100 suite Apartment)

Cost: \$20,000 Savings: \$3,500 - \$7,500/year

Tip #4 Ventilation Control

Energy Implications of Corridor Air Systems

Tip #5 Booster Pumps

- Booster Pumps operate to maintain water pressure on all floors often run continuously at a single speed and high pressure: wasteful of energy (and water?)
- CMHC/City of Toronto/Minto tested VSD and VPRV technologies in 7 buildings, 12-26 storeys

Tip #5:Booster Pump

• Water/electricity consumption monitored 4 weeks before and after implementation

CMHC SCHL

Tip #5:Booster Pump

• Water/electricity consumption monitored 4 weeks before and after implementation

CMHC SCHL

Tip #5:Booster Pump

- 51% reduction in pumping energy
- No water savings
- Overall 7 bldg savings of \$14,882/year in electricity
- Capital Costs for 7 bldgs \$52,000
- Pump Controls \$5,000 per building (2 pumps were replaced during study adding to cost)
- 3.4 year payback

Tip #6: Boilers

Heating Plant Upgrade

- Convert with higher quality Equipment sized appropriately
- Condensing boilers good 10% fuel savings opp.
- Tie into BAS
- Costs and saving will vary
- Automate Boiler Plant:
 Fine tune the old reset controllers
 Replace reset controllers with Building Automation System (BAS)

Tip #7 DHW Plant

Domestic Hot Water Plant Conversion

- Use condensing boiler technology (90%+)
- OR review tying into existing heating plant if high efficiency boiler in place for space heat

Tip #8: Toilet Conversions

Replace toilets with 6L ULFs

 Be careful of technology used for high rise applications

- cost: \$180/ unit, annual savings: \$40 \$60/ unit
- Go to www.cmhc-ca and search on "Toilets"

Tip #9: Hot Water Conversions

Shower Retrofit

- Verify actual flow
- cost: \$20 per unit, savings: \$8 per year per unit
- Potential 10-15% energy savings on dhw

Tip #9: Hot Water Conversions

Laundry Retrofit

- DOE Study in 50 apartments in Murbs
- Horizontal washers installed retrofit
- Washers used 50% less energy, 41% less water, 19% less detergent
- Dryer energy fell 22%
- 800,000 litres water/year savings

Tip #9: Hot Water Conversions

Laundry Retrofit

- City of Toronto Study
- 6 buildings, 945 suites, 39 washers each
- Washers used 61% less hot water use, 5% less electricity Dryer energy savings ??
- 44% water savings daily basis
- Bottom line \$170/yr/machine
- Incremental cost \$500

AND FINALLY

Tip #10. Verify your Results

- Follow up with utility tracking to ensure your measures work properly
- Applies to all work water, electric and gas
- Respect your contractor's opinion but use 3rd party verification if project is sizable

Water Use Post-Retrofit

Water Use Post-Retrofit

Solar Walls

Saves energy:

Payback 3-6 yrs on incremental costs
Provides 21% of ventilation heating

Provides 21% of ventilation heating Recovers 50% of wall heat loss

Relatively inexpensive:

\$8-9/ft² (incremental costs) \$23/ft² (total costs)

Simple to operate and maintain

Winnipeg Apartment Building

- 7175 ft² on upper 14 storeys
- No other envelope work done
- · Savings: \$17,500/year
- 10 year payback on total costs

Windsor Housing Authority

- ·30 years old
- 24 storeys
- 400 apartments
- ·Brick veneer deterioration
- Solar Wall added as part of envelope restoration
- •200' x 18'
- ·Heats 13,500 cfm
- •Saves \$4,800/yr

Should Walls be reinsulated?

Should Walls be reinsulated?

EIFS Retrofit Example:

Costs: \$235/m2 Estimated energy savings: \$3,393/year

Payback = 95 years!!

What about Individual Metering?

10-15% savings seem to be the norm

Beware of change in unit energy or water costs

Beware of metering related charges

Clothes Washing: Energy and Water

Common Laundry vs In-suite Laundry

2001 US Study Compared Water and Electricity consumption of in-suite and common laundries in 8 buildings

Conclusions: in-suite laundry consumed 3.3 X more water and 5X more energy

Source National Research Centre "A National Study of Water And Energy Consumption in Multi-Family Housing", 2001

What about New Buildings?

Design Charrette - Integrated design team Set Targets - energy use and ALC Reduce loads as far as possible: Increased wall/roof/window insulation Optimize Solar orientation - heating and cooling Smart lighting low watts/fixture and controls good design layout Build Tight - Ventilate Right High efficiency space and DHW heating Plan in flexibility for future energy source Individual metering

Measure	kWh/ year savings	\$/year savings	Increment al Cost	Simple Payback
Low E Windows	151,502	\$4,531	\$39,988	8.8
Air Leakage Control	41,081	\$1,229	\$5,880	4.8
Wall Insulation	180,475	\$5,398	\$75,530	14
Heat Recovery Ventilation	225,921	\$6,757	\$67,912	10
Combo System	242,931	\$7,266	\$54,600	11.7
Total	841,910	\$25,180	\$245,247	9.7

Questions & Answers Top 10 Energy & Water Saving Tips

in Multi-Unit Residential Buildings

Visit our website at www.cmhc.ca

